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Introduction 

Physical chemistry on the microscopic scale has 
traditionally been associated with a passive description 
of dynamical processes. For many years, interest has 
been expressed in the possibilities for control of 
molecular motion. A resurgence of activity in this area 
is being stimulated both by the dramatic improvement 
in the theoretical tools for describing few-body processes 
and, most importantly, by improvements in laser 
technology. The development of coherent pulses on 
short time scales of less than -50 fs opens up new 
prospects for control. For a soft molecular vibration 
frequency of -500 cm-l, the associated period is -300 
fs and intuitively it is clear that narrow laser pulses 
may be used to possibly “guide” a molecule to a given 
state. Equally important is the development of pro- 
grammable laser pulses, where, within experimental 
limitations, the operator imposes a desired structure 
with fine temporal or frequency features rather than 
creating a single narrow pu1se.l“ These experimental 
developments have led theoreticians to suggest specific 
schemes for utilizing lasers for actual control of mo- 
lecular motion, as described below. 

Brumer and Shapiro developed a scheme in which 
two alternate routes, each involving few photon tran- 
sitions, bring the system to a mixture of two degenerate 
final quantum states.5 Appropriate timing or phase 
control of the two pulses generates the coherence 
between the final states to produce the required 
mixture. The logic involved is analogous to control of 
the interference pattern generated by dual pathways, 
as in a “double slit” experiment. In a different approach, 
Tannor and Rice emphasized a molecular wave packet 
picture in which the operator “follows” the wave packet 
of the system and, by a series of appropriately timed 
transitions, guides it from one electronic state to 
another.6 A different paradigm was developed by 
Nelson and his co-workers, who use trains of pulses to 
impulsively “kick” the system.2 

In addition to these particular schemes, a general 
optimal control approach has been recently developed, 
in which the laser field structure is systematically 
tailored to the desired objective and the available 

Danlei Neuhauser recehred his M.D. in theoretlcai nuclear physlcs from the 
Cailfornla Institute of Technology in 1987 and has subsequently carried out 
research in the area of quantum molecular dynamics, wlth an emphasis on 
wave packet methods. He is presently on the faculty in the Department of 
Chemistry at the Unlverslty of Callfomla at Loa Angeles. 

HerschelRablkrecelved hlsM.D.inchemlceiphyslcefromHewardUnhrersity 
in 1971 and has subsequently been a faculty member in the Deparhnent of 
Chemistry at Princeton Unhrerslty. HIS research interests ile In the general area 
of chemical dynamics, especially lnvohrlng the introduction of systems analysis 
tools. These latter tools are the bask for his work in the topic of controlling 
molecular motlon. 

0001-4842/93/0126-0496$04.00/0 

experimental eq~ipment .~  This formalism is not a 
scheme per se, since it may be applied within any given 
molecular situation. Application of the formalism 
produces schemes which are optimal for the physical 
problem and its imposed constraints. 

In this account, we briefly review the paradigms of 
Brumer and Shapiro and of Tannor and Rice. The 
next section describes the mathematical machinery of 
the more general optimal control procedure and is 
followed by a brief review of the applications of 
molecular optimal control theory to various systems: 
control of rotational, vibrational, and electronic motion 
in diatoms; product selectivity in photodissociation of 
collinear three-body systems; and control of molecular 
motion in the liquid phase. Finally, a discussion is 
presented on the inherent difficulties and limitations 
of coherent field design, followed by a suggestion that 
takes advantage of the best capabilities of theory and 
experiment, through an adaptive learning algorithm, 
to literally teach lasers how to control molecules. 

Control of Molecular Motion: Simple 
Paradigms 

The different paradigms and approaches to control 
of molecular systems will be developed with reference 
to a very simple system of dissociation (Figure l), where 
the molecule initially lies on the ground state of a bound 
electronic surface (X) and the eventual goal is to bring 
the system into one of two asymptotes of a dissociative 
upper surface (A). Other variations of these schemes 
exist, but these serve to illustrate the basic ideas 
involved. 

In a typical application of the coherent-state approach 
of Brumer and Shapiro? the system is partially excited 
from the ground state to a rovibrationally excited 
bound-state Q on surface X, such that a coherent 
nonstationary wave packet results: 

Q = a,e-”EO’*’,(r) + a1e-”1%,(r) 

A second pulse then excites the system further, at  time 
t z ,  to the dissociative surface A. By varying the pulse 
times, different wave packets result, concentrated on 
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a small number of required final quantum states. For 
example, in dissociation of a model collinear triatomic 

n 

Figure 1. (a) Schematic of the Brumer-Shapiro control paradigm 
for a model one-dimensional system; appropriate mixing of two 
pulses generates a quantum state localized to the left (or the 
right) of a barrier on the upper surface. (b) Schematic of the 
Tannor-Rice paradigm; two short pulses are used, first to excite 
an oscillatory wave packet on the ground electronic state surface 
X, and then, the second pulse excites the wave packet to the 
desired part of surface A. 

the left or right side of the barrier (Figure la), Le., control 
is exerted on the relative yield. This can be quanti- 
tatively described as follows. The final pulse has 
frequencies wo and w1 = wo - (E1 - EO) and brings the 
system to a particular mixture of two continuum states 
({L, {R) concentrated on the two sides (left L and right 
R) of the barrier 

and by adjusting the relative intensities and phases of 
the two pulses, it is possible to create states concentrated 
mainly, or entirely, in {L (or {R), thus gaining control. 

Tannor and Rice introduced another approach: in 
which the laser fields are pulses “designed” by inspection 
to move the system wave packet between the two 
surfaces. A simple example is shown in Figure lb. A 
vibrational wave packet is excited on the lower surface 
by one pulse, and a second pulse excites the wave packet 
upward to the dissociative electronic surface. Selec- 
tivity from a two-pulse scheme may not be sufficient 
to yield complete control of the system, and thus a series 
of pulses may be necessary to specifically “move” the 
wave packet up and down between the two electronic 
potentials. The choice of appropriate pulse times and 
phases clearly needs to be automated; indeed, optimal 
control theory supplies exactly such an algorithm, as 
will be explained in the next section. However, we need 
to comment on the necessity to proceed beyond the 
simple coherent-state approach for complicated tri- 
atomics or heavier few-body molecular systems. 

The approach of Brumer and Shapiro is attractive 
for simple systems, such as the one-dimensional example 
in Figure 1, or for curve-crossing diatomic~.~ In general, 
this approach should perform well for any system where, 
by a series of optical transitions, it is possible to isolate 

A + B C  
-+ JAB + C 

the dissociated wave functibn is described outside the 
reaction region by a sum over vibrational states 

where r and R are Jacobi coordinates corresponding to 
the AB and C-AB distances and r‘ and R’ are the 
corresponding values for the BC and A-BC separations. 
The most favorable situation for coherent-state control 
arises when the optical coupling is sufficiently large for 
both pathways to produce significant yields at  low 
dissociation energies E ,  at which only few vibrational 
channels are open. Then, by including multiple pulses 
and adjusting the phase and timing of the dissociation- 
inducing pulses, it is possible to specifically select the 
channel to which dissociation occurs. 

The utilization of this approach is not guaranteed, 
however, for systems exhibiting IVR such that short 
optical excitation couples to many quantum states. Even 
in systems with resolvable lines, such that the various 
states are individually accessible (e.g., in the 100-ns 
time scale regime where optical line coherence can 
typically be maintained), the dipole transitions to the 
few desired final states must be strong. Thus, for control 
of dissociation into various products, the transition to 
the states that are close to the dissociation thresholds 
must be very strong, which is not a common case for 
a polyatomic system. 

A different application is control of dynamics in 
liquids, where it is desirable to have an automated 
procedure that determines multiphoton transitions in 
the presence of rapid collisions destroying phase 
coherence. In a study based on the Bloch equation, it 
was found that, with designed pulses, selectivity remains 
even if the pulse width T is equal to (or moderately 
longer than) Tz ,  the time between consecutive collisom8 
Specifically, selectively remains for Tz/T 2 1. It was 
found that when TZ << TI, where T1 is the energy 
exchange time (i.e., for collisions in a molecular beam 
seeded with rare gases), the approach based on a simple 
paradigm related to Figure l a  gave poor results? while 
an optimal design approach was far superior.* Thus, 
it is clear that the need arises for a procedure that 
predicts field structures incorporating any necessary 
multiphoton processes, as well as external disturbances. 
Such a procedure, where field structuring is done 
systematically, is described below. Nevertheless, the 
essential feature of all coherent molecular control is 
the manipulation of interfering pathways, as exempli- 
fied by the two-pathway paradigm in Figure 1. 

The Optimal Control Algorithm 
The optimal control algorithm is an iterative pro- 

cedure where the predicted field is repeatedly corrected 
for improved overall yield. The procedure will be 
developed in stages below, with reference to the simple 
dissociation example in Figure 1 (even though the full 
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parameter. However, this difficulty can be easily 
circumvented using Lagrange multiplier variables, and 
the modified procedure is developed as follows (first 
for unrestricted fields). We note that the objective J 
depends on e ( t )  both directly (due to the fluence cost 
term) and indirectly due to the dependence of \k(t) on 
~ ( t ) ,  via the Schrodinger equation 

i@ = H,\k + e@ = Ht,b 
The Schrodinger equation is incorporated explicitly by 
adding a term with a Lagrange state function X(t) into 
the objective 

power of the optimal control procedure is truly evident 
only for more complex systems). 

The first stage in optimal control theory is the 
representation of the “maximum yield” requirement in 
mathematical terms as minimization of an objective 
Jo, which is taken here as the integrated yield beyond 
a large distance on one side of the barrier (here the 
right side is taken): 

where 7, the final time, is any large time when the full 
dissociation is complete. Once T is sufficiently large, 
the field profile does not depend on it; rI is a long 
distance extending into the asymptotic region. 

Next are introduced constraints on the field, that are 
loosely divided into two overlapping types: physical 
and paradigm-related. The physical constraints take 
into account the relative difficulty associated with 
creating the laser field. For example, the total fluence 
is often sought to be as small as possible; to effect this, 
we add a cost term 

to the objective, such that the total objective to be 
minimized is 

The value of the weight factor > 0 is determined by 
the experimental conditions; P should be large if high 
intensities are difficult to obtain and one is willing to 
forego some of the selectivity in exchange for lower 
intensity. Other penalties are similarly incorporated 
by adding appropriate physically motivated cost terms 
to the objective. 

The second class of constraints is related to the 
specific paradigm chosen for the field. In the most 
unrestricted case, the field e ( t )  would simply be 
discretized into a fine grid of points [e(t = 0), e(At) ,  
e (2At) ,  ... E(T)] to be determined. As another example, 
a two-pulse Tannor-Rice scheme may have free pa- 
rameters for the location, width, and carrier frequency 
of the pulses 

2 

e( t )  = xAiexp[-(t - tJ2/t?I cos(wit-4J 

Similar expressions can be written for any other specific 
field paradigms.7 

Once the actual field form, the objective, and the 
cost terms are established, the third and final step in 
the control procedure is the search for the optimal field 
(i.e., the field that optimizes the objective in competition 
with the costs, subject to the paradigm-specific field 
form). A variety of means may be employed, but a 
simple search procedure is effected by a linear gradient 
algorithm. Thus, for the two-pulse field form, the field 
is improved by iteration 

i= l  

A,-Ai + CY- a J  
aAi 

and similarly for the other parameters in the field. Such 
an iteration becomes very expensive for field forms with 
many parameters, as separate evaluations of Jmust  be 
done for the calculation of the derivative of each 

The minimization of J is now done with respect to e(t), 
4(t), and X(t) (Le., \k(t) is no longer considered a 
functional of e ( t ) ) .  Minimization with respect to \k and 
A, respectively, leads to 

i@ = H$ 

The above final condition for X ( r , T )  applies to ita A-state 
component, while for the X-state, we have X ( r , T )  = 0. 
Note especially that the boundary condition on X is 
given at the final time; thus X(r,t) is propagated 
backward. 

The minimization with respect to ~ ( t )  is still done 
iteratively, where the gradient is now 

The introduction of X has allowed for the ready 
evaluation of 6J/6e(t) once X(t) and \k(t) are known at 
any level of iteration. The optimal control procedure 
begins by making an initial trial choice of c ( t )  and 
improving it iteratively. At  each iteration stage, the 
Schrodinger equation for \k is solved first, and the final- 
time wave function \k(r,r) is used to yield the initial 
value for X(r,7). Then, X(r,t) is propagated backward 
and is used to yield the gradient of the objective 
functional with respect to E @ ) .  The field is modified 
along the gradient. The resultant procedure is generally 
computationally efficient, since at  every iteration step, 
only two wave packet propagations are required. 
Moreover, it is useful even when a specific paradigm 
for the field is invoked; for example, in a Tannor-Rice 
pulse paradigm, the gradient with respect to the field 
strengths will be calculated as 

6 J  JG exp[-(t - ti)2/t?1 cos(w,t - 6,) dt 

with similar equations for the pulse frequency, phase, 
duration, and width. The procedure of Brumer and 
Shapiro may also be cast as a special case of optimal 
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Figure 2. Localization of wave packets in different regions via 
the control algorithm on a known electronic surface may possibly 
be used for extracting the potential energy function of an upper 
electronic surface. The figure schematically indicates the transfer 
of a localized wave packet on one surface to another. Probing 
the dynamics of the wave packet can yield information about the 
potential surfaces. 

control theory as it ultimately assesses the product yield 
in terms of a few constrained field parameters. 

Optimal Control Applications 

In this section, we briefly review various recent 
implementations of the optimal control procedure. This 
procedure has been illustrated for all aspects of 
molecular motion: rotational alignment,1° vibrational 
localization,7J1 and electronic selectivity.12 In both 
alignment and vibrational localization, the wave packet 
is required to evolve to a desired form at a particular 
time 7. The importance of this application is 2-fold. 
First, effects of rotational alignment in collisions can 
be studied if the wave packet is made to point in a given 
direction prior to collisions and before dephasing, or 
for other reorientation-specific probes. Moreover, by 
creating a local vibrational wave packet on a given 
known electronic surface, it may be possible to perform 
a femtosecond excitation experiment in which the 
absorption spectrum reveals the position dependence 
of the potential on an upper curve (see Figure 2; such 
an experiment would likely rely on the analysis of the 
temporal signal rather than the bandwidth-limited 
absorption). l3 The creation of specific localized wave 
packets can be valuable for extending femtosecond 
experiments to determine potentials for multidimen- 
sional systems. Vibrational localization was tested both 
for achieving a special wave packet formg and for general 
localization of a wave packet. The latter goal was tested 
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Figure 3. Field for effectively eliminating the adiabatic coupling 
in a particular case of curve crossing, when the power spectra are 
restricted to contain only high-frequency components. Here, 
the field acts between the ground state (1) and the crossing curves 
(2 and 3) of Figure 4. 

on a specific model one-dimensional system where the 
objective was 

J, = (Jl%P(r,7)12(r - ro) dr)? + Jl*(r,7)I2(r - ro)2 dr 

The first term is responsible for guiding the wave packet 
to the average position ro, and the second term controls 
how well the wave packet is localized (i.e., its variance). 
We find that this objective of localization is easily 
achieved? 

Another example where optimal control was utilized 
is selectivity in curve crossing; the example studied was 
of two dissociation curves, reminiscent of those arising 
in IBr. The system was studied without including 
rotations.12 While full control of purely vibrational 
motion on two electronic states can be achieved with 
the Brumer-Shapiro wave packet preparation proce- 
d ~ r e , ~  the optimal control study was designed as a 
precursor to the realistic three-dimensional study of 
more general motion control (where only simple wave 
packet preparation can mix in unwanted states and 
limit selectivity). When the optimal control approach 
is applied naively to the curve-crossing problem, the 
procedure predicts, not surprisingly, the need for a dc 
field of the exactly correct magnitude for elimination 
(or enhancement) of the effect of the nonadiabatic 
coupling between the dissociative curves. Since it is 
not feasible to create very high intensity dc fields, the 
formalism must be modified to eliminate such fields. 
The approach is to add a high-pass filter 

E(t) = $_.._O(l~l-  wI)c(w)e'"t dt  

where 01 is a low (IR) frequency above which high 
intensities can be obtained and O(o1 - Iwl) is a step 
function, with the effect that the low-frequency com- 
ponents are filtered out. The optimization proceeds 
exactly as in the unrestricted field case, except that, 
after every iteration step, the field is filtered again to 
contain solely high frequencies 

(15) Kosloff, R.; Ria, S. A.; Gaspard, P.; Tersigni, S.; Tannor, D. J. 
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triatomics. In Figure 5,  we exhibit a contour map of 
the potential and some snapshots of the wave packet 
probability density employed in ref 14 where only the 
ground electronic potential was utilized. (We note that 
the inclusion of various electronic states,ls while phys- 
ically important for describing the optical transitions 
between the various electronic states, does not modify 
the overall formalism.) The initial system is a bound 
collinear triatomic ABC. By application of the optimal 
field, the system is preferentially excited to yield AB 
+ C (or A + BC, if required). The objective which the 
optimal field minimizes is 

J = SG(r)lWr,r)P dr 

where G(r) is any weight function that samples pref- 
erentially the AB + C arrangement. 

Adaptive Control: Teaching Lasers to Control 
Molecules 

To effectively carry out design calculations for 
optimal control of molecular motion, it is necessary to 
have available the system Hamiltonian and the ability 
to efficiently solve Schrddinger's equation. As is well- 
known, accurate Hamiltonians, including optical cou- 
pling coefficients for polyatomic molecules, are not 
readily available. The technology for solving large- 
scale quantum dynamics problems is also limited, 
although improvements in both of these areas will surely 
occur in the coming years. From another perspective, 
the current optimal control design calculations suggest 
that a marriage of learning algorithms with the po- 
tentially high duty cycle of computer-driven optical 
pulse-shaping techniques and the subsequent rapid 
probing of the created molecular state may be used to 
literally teach lasers how to control molecular motion. 
In this case, the objective should be chosen as simple, 
such as steering the system out of channel 1 versus 
channel 2, which could be easily detected by a simple 
probe measurement without subsequent detailed anal- 
ysis. The learning algorithm would essentially be 
employed to discern patterns of advantage in one optical 
field versus another, suggesting new forms for further 
improvement, to be rapidly implemented by the pulse- 
shaping apparatus, and once again probed for their 
effect. Simulations of this learning algorithm approach 
were quite ~uccessfu1,~~ even including a case that 
showed high-fidelity learning about the control field 
without prior knowledge of the Hamiltonian.16 The 
learning process has a strong resemblance to the overall 
optimal control algorithm. The primary difference is 
that the wave function does not explicitly appear in the 
learning algorithm, as only its observable effects could 
be measured. In actual implementation, a preliminary 
field design e&) would best be done using the tools of 
optimal control theory, followed by its iterative re- 
finement in the laboratory pulsed pump-probe appa- 
ratus. Thus, the actual molecules are used as exact 
analog computers having full knowledge of their own 
Hamiltonians and solving Schrodinger's equation in 
real time. The procedure is also inherently robust, as 
it uses the actual laboratory environment. Figure 6 
summarizes this full algorithm. Although feedback 

(17) Gross, P.; Neuhauser, D.; Rabitz, H. J.  Chem. Phys. 1993, 98, 
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Figure 4. Schematic of the physical mechanism induced by the 
restricted optimal field on the strong coupling system designed 
to maximize the channel 3 product. Nominally, without control, 
the initial wave packet on curve 3 will exit on channel 3 only with 
0.127 probability. The control field in Figure 3 reversed this 
situation, with the probability of exiting on channel 3 now being 
0.631. The mechanism is seen to be a dump of amplitude down 
to surface 1, free evolution with the momentum carried from 
curve 3 to eventually recycle it at a further distance from the 
crossing point to once again manipulate the wave packet and 
thereby significantly enhance the amplitude out of channel 3. 
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Figure 5. Contour maps of molecular probability density at 
different times for photodiesociation of a model collinear triatomic 
with an optimally designed field. A contour map of the molecular 
potential energy is superimposed for reference with the initial 
ground-state probability density at t = 0. The probability density 
keeps its shape by t = 0.0375 pa, but beyond 0.075 pa, it spreads 
rapidly down the desired channel to the right.I6 

E(t) - E(t) + aSmAe(o)eiUt8(lwl -OD - wI) dt 

where A+) is the frequency transform of the objective 
gradient, 6J/6e(t). An example of the resultant field is 
shown in Figure 3 and the control mechanism is in 
Figure 4. In general, it  was found that the frequency- 
restrained fields could effectively steer the wave packet 
out the desired curve-crossing channel in direct com- 
petition with the adiabatic coupling.12 

In addition to diatomics, there have been two 
applicationsl4J5 of the optimal control techniques to 
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experimental and theoretical paradigms which are now 
being developed for manipulating molecular motion. 
There is much research to be performed to fully 
understand the capabilities of the optimal control 
approach to manipulating molecular motion. From a 
historic perspective, the technique is quite natural for 
molecular objectives,18 although it is quite new in the 
quantum mechanical context. Many issues need to be 
explored, and the brevity of this review has not 
permitted a thorough analysis. Certainly, high on the 
list of research goals is the need to develop an assurance 
that the field designs are robust to the various Hamil- 
tonian and laboratory uncertainties that may arise. 
Molecular optimal control theory contains an abun- 
dance of richness, and in this regard, it is possible to 
show, under rather mild assumptions, that quantum 
mechanical control problems can exhibit a denumerably 
infinite number of  solution^.^^ Finally, an adaptive 
learning algorithm was suggested, drawing on the best 
capabilities of optimal control theory and the emerging 
optical pulse-shaping tools. This latter approach shows 
the most promise for success in the immediate future, 
as it is based on systematic feedback of control field 
design from a rapid sequence of computer-automated 
ultrafast pump-probe experiments. 

Finally, it is worthwile to speculate on the classes of 
chemical problems anticipated to be opened for study 
with the availability of practical laboratory and the- 
oretical techniques fcr molecular control.20 First, 
historically, the objective of manipulating chemical 
reactivity certainly stands as the outstanding objective. 
Practical results may ensue from such studies, but 
perhaps more important will be the insight gained into 
the underlying dynamics. In this regard, the most 
significant chemical application of these concepts is 
anticipated to be their redirection for the purpose of 
extracting high-quality, detailed information about the 
underlying molecular Hamiltonian, including intramo- 
lecular potential surfaces and optical coupling coeffi- 
cients. In this context, a feedback algorithm similar to 
that of Figure 6 could be established with the sequence 
of iterative experiments specifically designed to ease 
the notoriously difficult burden of inverting laboratory 
data to seek out such fundamental information. Beyond 
chemistry, applications may also be found in controlling 
quantum electron transport in nanometer-scale semi- 
conductor devices. The sense in the community is that 
such developments are on the threshold of realization, 
as once and for all, the theoretical concepts and 
experimental tools are now becoming available. 
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Theory Estimate 

i i 

New Field 
Design ~ ( t :  

t 

Laboratory 
Realization of €(I) 
and its Molecular r Application 
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Figure 6. Schematic of an adaptive learning algorithm approach 
toteaching lasers to control molecules. The algorithm is initiated 
by an optimal control estimate e&) of the control field, followed 
by ita laboratory refinement in a computer-controlled sequence 
of experiments coupled to a pattern-recognizing learning algo- 
rithm. The latter cyclic process in the laboratory is exactly 
analogous to the design operations in the first box labeled 
'Optimal Design Theory", except the computer model of the 
molecular dynamics is replaced by the true molecules executing 
exact dynamics under the actual laboratory fields. 

from a single control experiment cannot be done in real 
time (due to the ultrafast nature of the events), 
equivalent information could be obtained from a rapid 
sequence of experiments. In this fashion, we envision 
that the powerful tools of modern macroworld engi- 
neering control can now be brought to bear at  the 
molecular level, where the laws of quantum mechanics 
are operative. The finesse of rapid optical pulse-shaping 
techniques and advanced learning algorithms should 
be capable of systematically finding solutions to the 
complex problem of molecular control. 

Conclusion 
In this account, we reviewed the subject of molecular 

control with an emphasis on the generality of the 
optimal control procedure. Our focus was on the 
underlying physical assumptions leading to a framework 
capable of formulating optical controls of complex 
molecular motion. Optimal molecular control is not 
itself a paradigm but rather an algorithm to yield 
optimal fields, subject to any given paradigm on the 
field structure. Thus, the application of the optimal 
control algorithm will be applicable within any of the 
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